p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.18C24, C22.38C25, C42.541C23, C24.480C23, (C22×C4)⋊44D4, C4⋊Q8⋊74C22, (C4×D4)⋊30C22, C4○(C23⋊3D4), (C2×C4).41C24, C2.17(D4×C23), C23⋊3D4⋊18C2, C4⋊D4⋊63C22, C4⋊1D4⋊43C22, C4⋊C4.282C23, (C2×C42)⋊45C22, (C23×C4)⋊31C22, C23.355(C2×D4), C4.173(C22×D4), C22⋊C4.6C23, C22⋊Q8⋊74C22, C22≀C2⋊27C22, C22.3(C22×D4), C4○(C22.29C24), (C2×D4).291C23, C4.4D4⋊64C22, (C22×D4)⋊60C22, (C2×Q8).423C23, (C22×Q8)⋊60C22, C22.19C24⋊13C2, C22.29C24⋊37C2, C42⋊C2⋊88C22, C2.4(C2.C25), C4○(C23.38C23), C4○(C22.31C24), C22.26C24⋊26C2, (C22×C4).1179C23, C22.D4⋊32C22, C23.38C23⋊39C2, C22.31C24⋊30C2, (C2×C4).662(C2×D4), (C2×C4⋊C4)⋊129C22, (C22×C4○D4)⋊15C2, (C2×C4○D4)⋊69C22, (C2×C4)○(C23⋊3D4), (C2×C42⋊C2)⋊55C2, (C2×C4)○(C22.29C24), (C2×C22⋊C4).529C22, (C2×C4)○(C22.31C24), SmallGroup(128,2181)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.38C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=1, g2=a, ab=ba, dcd=fcf=ac=ca, ede=ad=da, ae=ea, af=fa, ag=ga, ece=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cg=gc, df=fd, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 1244 in 778 conjugacy classes, 428 normal (12 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C24, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C4⋊1D4, C4⋊Q8, C23×C4, C23×C4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, C2×C42⋊C2, C22.19C24, C22.26C24, C23⋊3D4, C22.29C24, C23.38C23, C22.31C24, C22×C4○D4, C22.38C25
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, C25, D4×C23, C2.C25, C22.38C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 11)(2 12)(3 9)(4 10)(5 29)(6 30)(7 31)(8 32)(13 18)(14 19)(15 20)(16 17)(21 26)(22 27)(23 28)(24 25)
(1 13)(2 14)(3 15)(4 16)(5 22)(6 23)(7 24)(8 21)(9 20)(10 17)(11 18)(12 19)(25 31)(26 32)(27 29)(28 30)
(1 19)(2 20)(3 17)(4 18)(5 23)(6 24)(7 21)(8 22)(9 16)(10 13)(11 14)(12 15)(25 30)(26 31)(27 32)(28 29)
(1 22)(2 23)(3 24)(4 21)(5 18)(6 19)(7 20)(8 17)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)
(1 14)(2 15)(3 16)(4 13)(5 26)(6 27)(7 28)(8 25)(9 17)(10 18)(11 19)(12 20)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,11)(2,12)(3,9)(4,10)(5,29)(6,30)(7,31)(8,32)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25), (1,13)(2,14)(3,15)(4,16)(5,22)(6,23)(7,24)(8,21)(9,20)(10,17)(11,18)(12,19)(25,31)(26,32)(27,29)(28,30), (1,19)(2,20)(3,17)(4,18)(5,23)(6,24)(7,21)(8,22)(9,16)(10,13)(11,14)(12,15)(25,30)(26,31)(27,32)(28,29), (1,22)(2,23)(3,24)(4,21)(5,18)(6,19)(7,20)(8,17)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,14)(2,15)(3,16)(4,13)(5,26)(6,27)(7,28)(8,25)(9,17)(10,18)(11,19)(12,20)(21,29)(22,30)(23,31)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,11)(2,12)(3,9)(4,10)(5,29)(6,30)(7,31)(8,32)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25), (1,13)(2,14)(3,15)(4,16)(5,22)(6,23)(7,24)(8,21)(9,20)(10,17)(11,18)(12,19)(25,31)(26,32)(27,29)(28,30), (1,19)(2,20)(3,17)(4,18)(5,23)(6,24)(7,21)(8,22)(9,16)(10,13)(11,14)(12,15)(25,30)(26,31)(27,32)(28,29), (1,22)(2,23)(3,24)(4,21)(5,18)(6,19)(7,20)(8,17)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,14)(2,15)(3,16)(4,13)(5,26)(6,27)(7,28)(8,25)(9,17)(10,18)(11,19)(12,20)(21,29)(22,30)(23,31)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,11),(2,12),(3,9),(4,10),(5,29),(6,30),(7,31),(8,32),(13,18),(14,19),(15,20),(16,17),(21,26),(22,27),(23,28),(24,25)], [(1,13),(2,14),(3,15),(4,16),(5,22),(6,23),(7,24),(8,21),(9,20),(10,17),(11,18),(12,19),(25,31),(26,32),(27,29),(28,30)], [(1,19),(2,20),(3,17),(4,18),(5,23),(6,24),(7,21),(8,22),(9,16),(10,13),(11,14),(12,15),(25,30),(26,31),(27,32),(28,29)], [(1,22),(2,23),(3,24),(4,21),(5,18),(6,19),(7,20),(8,17),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32)], [(1,14),(2,15),(3,16),(4,13),(5,26),(6,27),(7,28),(8,25),(9,17),(10,18),(11,19),(12,20),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | ··· | 2Q | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 4K | ··· | 4Z |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C2.C25 |
kernel | C22.38C25 | C2×C42⋊C2 | C22.19C24 | C22.26C24 | C23⋊3D4 | C22.29C24 | C23.38C23 | C22.31C24 | C22×C4○D4 | C22×C4 | C2 |
# reps | 1 | 1 | 8 | 4 | 4 | 4 | 4 | 4 | 2 | 8 | 4 |
Matrix representation of C22.38C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 2 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,2,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,3,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3] >;
C22.38C25 in GAP, Magma, Sage, TeX
C_2^2._{38}C_2^5
% in TeX
G:=Group("C2^2.38C2^5");
// GroupNames label
G:=SmallGroup(128,2181);
// by ID
G=gap.SmallGroup(128,2181);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,387,1123,102]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=1,g^2=a,a*b=b*a,d*c*d=f*c*f=a*c=c*a,e*d*e=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*g=g*c,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations